
SoftRobots Components
Documentation

Release 19.01

DEFROST team

Apr 15, 2021

Contents

1 Contents of the library 3
1.1 component.constraint . 3
1.2 component.controller . 9
1.3 component.engine . 16

2 Indices and tables 17

Python Module Index 19

Index 21

i

ii

SoftRobots Components Documentation, Release 19.01

The SoftRobots plugin contains SOFA components dedicated to soft robotics. You can find for example, models for
cable and pneumatic actuations, tools to define trajectories for the robot’s end effector, or tools to communicate with
microcontroller boards.

All these components are discribed in this documentation.

Contents 1

SoftRobots Components Documentation, Release 19.01

2 Contents

CHAPTER 1

Contents of the library

constraint Constraint components (e.g actuation)
controller Controller components (e.g animation edition)
engine

1.1 component.constraint

Constraint components (e.g actuation)

1.1.1 Brief description

In our framework, we handle the actuation and contact by defining specific constraints with Lagrange multipliers on
the boundary conditions of the deformable models. Different types of actuators are proposed (e.g cable and pneumatic
actuators).

1.1.2 Contents

component.constraint.CableConstraint In this directory you will find multiple examples show-
ing how to use the CableConstraint component:

component.constraint.
SurfacePressureConstraint

In this directory you will find multiple examples show-
ing how to use the SurfacePressureConstraint compo-
nent:

component.constraint.
UnilateralPlaneConstraint

In this directory you will find one example showing how
to use the UnilateralPlaneConstraint component:

component.constraint.CableConstraint

In this directory you will find multiple examples showing how to use the CableConstraint component:

3

SoftRobots Components Documentation, Release 19.01

• Finger.pyscn : Soft actuated finger

• CableConstraint.pyscn : Stanford bunny

• DisplacementVsForceControl.pyscn : Stanford bunny

Below is a video of a soft finger actuated with one cable. You can run this simulation by loading the file Finger.pyscn
with the application runSofa.

Example

This create a new node in the scene. This node is appended to the finger's node.
cable = finger.createChild('cable')

This create a MechanicalObject, a componant holding the degree of freedom of our
mechanical modelling. In the case of a cable it is a set of positions specifying
the points where the cable is passing by.
cable.createObject('MechanicalObject',

position=[
[-17.5, 12.5, 2.5],
[-32.5, 12.5, 2.5],
[-47.5, 12.5, 2.5],
[-62.5, 12.5, 2.5],
[-77.5, 12.5, 2.5],

[-83.5, 12.5, 4.5],
[-85.5, 12.5, 6.5],
[-85.5, 12.5, 8.5],
[-83.5, 12.5, 10.5],

[-77.5, 12.5, 12.5],
[-62.5, 12.5, 12.5],
[-47.5, 12.5, 12.5],
[-32.5, 12.5, 12.5],
[-17.5, 12.5, 12.5])

Create a CableConstraint object with a name.
The indices are referring to the MechanicalObject's positions.
The last indice is where the pullPoint is connected.
cable.createObject('CableConstraint', name="aCableActuator",

#indices=range(0,14),
indices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
pullPoint=[0.0, 12.5, 2.5])

This create a BarycentricMapping. A BarycentricMapping is a key element as it will
→˓create a bi-directional link
between the cable's DoFs and the finger's ones so that movements of the cable's
→˓DoFs will be mapped
to the finger and vice-versa;
cable.createObject('BarycentricMapping')

4 Chapter 1. Contents of the library

SoftRobots Components Documentation, Release 19.01

Data fields

Re-
quired

Description

in-
dices

List of points connected by the cable (from extremity to actuated point). If no indices are given, default
value is 0. In case of multiple indices, one point will be actuated and the others will represent sliding points
for the cable.

pull-
Point

Fixed point from which the cable is pulled. If unspecified, the default value is {0.0,0.0,0.0}

value Displacement or force to impose.
val-
ueIn-
dex

Index of the value (in InputValue vector) that we want to impose. If unspecified the default value is {0}.

val-
ue-
Type

Either “displacement”, the contstraint will impose the displacement provided in data value[valueIndex], or
force, in this case the contstraint will impose the force provided in data value[valueIndex]. If unspecified,
the default value is displacement.

Optional Description
maxForce Maximum force of the actuator. If unspecified no maximum value will be considered.
minForce Minimum force of the actuator. If unspecified no minimum value will be considered and the cable

will then be seen as a stiff rod able to push.
maxPosi-
tiveDisp

Maximum displacement of the actuator in the positive direction. If unspecified no maximum value
will be considered.

maxNega-
tiveDisp

Maximum displacement of the actuator in the negative direction. If unspecified no maximum value
will be considered.

maxDisp-
Variation

Maximum variation of the displacement allowed. If not set, no max variation will be concidered.

drawPull-
Point

If true, will draw the pull point (default true).

drawPoints If true, will draw the points (default true).
color Color of the string.
hasPull-
Point

If false, the pull point is not considered and the cable is entirely mapped. In that case, needs at
least 2 different point in indices

Properties Description
cableInitial-
Length

Read only. Gives the initial length of the cable

cableLength Read only. Gives the current length of the cable. Computation done at the end of the time
step.

force Read only. Output force
displacement Read only. Output displacement compared to the initial cable length

component.constraint.SurfacePressureConstraint

In this directory you will find multiple examples showing how to use the SurfacePressureConstraint component:

• Springy.pyscn : Soft actuated accordion

• PressureVsVolumeGrowthControl.pyscn : Stanford bunny

1.1. component.constraint 5

SoftRobots Components Documentation, Release 19.01

Below is a video of a soft Standford bunny actuated with pressure in its inner cavity. You can run this simulation by
loading the file PressureVsVolumeGrowthControl.pyscn with the application runSofa.

Example

This create a new node in the scene. This node is appended to the accordion's node.
cavity = accordion.createChild('cavity')

This create a MechanicalObject, a componant holding the degree of freedom of our
mechanical modelling. In the case of a pneumatic actuation it is a set of positions
→˓describing the cavity wall.
cavity.createObject('MeshSTLLoader', name='loader', filename=path+'Springy_Cavity.stl
→˓')
cavity.createObject('MeshTopology', src='@loader', name='topo')
cavity.createObject('MechanicalObject', name='cavity')

Create a SurfacePressureConstraint object with a name.
cavity.createObject('SurfacePressureConstraint', template='Vec3', name="pressure",

triangles='@topo.triangles',
valueType="1",
value="8")

This create a BarycentricMapping. A BarycentricMapping is a key element as it will
→˓create a bi-directional link
between the cavity wall (surfacic mesh) and the accordion (volumetric mesh) so that
→˓movements of the cavity's DoFs will be mapped
to the accordion and vice-versa;
cavity.createObject('BarycentricMapping', name='mapping', mapForces=False,
→˓mapMasses=False)

Data fields

Re-
quired

Description

tri-
an-
gles

List of triangles on which the surface pressure is applied. If no list is given, the component will fill the two
lists with the context topology.

quads List of quads on which the surface pressure is applied. If no list is given, the component will fill the two
lists with the context topology.

value List of choices for volume growth or pressure to impose.
val-
ueIn-
dex

Index of the value (in InputValue vector) that we want to impose. If unspecified the default value is {0}.

val-
ue-
Type

Either “volumeGrowth”, the contstraint will impose the volume growth provided in data value[valueIndex],
or “pressure”, in this case the contstraint will impose the pressure provided in data value[valueIndex]. If
unspecified, the default value is pressure.

6 Chapter 1. Contents of the library

SoftRobots Components Documentation, Release 19.01

Optional Description
flipNormal Allows to invert cavity faces orientation. If a positive pressure acts like a depressurization, try to

set flipNormal to true.
maxPressure Maximum pressure allowed for actuation. If no value is set by user, no maximum pressure

constraint will be considered.
minPressure Minimum pressure allowed for actuation. If no value is set by user, no minimum pressure con-

straint will be considered. A negative pressure will empty/drain the cavity.
maxVol-
umeGrowth

Maximum volume growth allowed for actuation. If no value is set by user, no maximum will be
considered. NB: this value has a dependancy with the time step (volume/dt) in the dynamic case.

minVol-
umeGrowth

Minimum volume growth allowed for actuation. If no value is set by user, no minimum will be
considered. NB: this value has a dependancy with the time step (volume/dt) in the dynamic case.

maxVol-
umeGrowth-
Variation

Maximum volume growth variation allowed for actuation. If no value is set by user, no maxi-
mum will be considered. NB: this value has a dependancy with the time step (volume/dt) in the
dynamic case.

drawPressure Visualization of the value of pressure. If unspecified, the default value is {false}.
drawScale Scale for visualization. If unspecified the default value is {0.1}.

Properties Description
volumeGrowth Read only. Output volume growth.
pressure Read only. Output pressure.
initialCavityVolume Read only. Output volume of the cavity at init (only relevant in case of closed mesh).
cavityVolume Read only. Output volume of the cavity (only relevant in case of closed mesh).

component.constraint.UnilateralPlaneConstraint

In this directory you will find one example showing how to use the UnilateralPlaneConstraint component:

• ArticulatedTentacle.pyscn : Soft cable-driven tentacle with self-collision regions

This component is a simple point plane collision model. By providing 4 points to the component, the first point will be
constrained to stay in one side of the plane described by the three other points (in the direction of the plane normal).
All the four points, the triangle and the normal can be seen by allowing the ‘Collision Model’ in the ‘View’ tab. Below
are images of the simulation.

1.1. component.constraint 7

SoftRobots Components Documentation, Release 19.01

Example

tentacleContact = tentacle.createChild('contact')
tentacleContact.createObject('MechanicalObject',

position="64 0 11 69 7 8 69 -7 8 71 0 17 "+
"107 0 -23 111 7 -27 111 -7 -27 117 0 -17 "+
"93 0 -7.5 97 7 -11 97 -7 -11 102 0 -0.5 "+
"138 0 -73 141 7 -77 141 -7 -77 146 0 -72 "+
"78 0 3 83 7 0 83 -7 0 86 0 9 "+
"118 0 -38 122 6.7 -42 122 -7 -42 129 -0.2 -35 "+
"129.5 0 -55.5 132 7 -60 132.5 -7 -59.6 138 0 -53.5")

tentacleContact.createObject('UnilateralPlaneConstraint', indices="0 1 2 3")
tentacleContact.createObject('UnilateralPlaneConstraint', indices="4 5 6 7")
tentacleContact.createObject('UnilateralPlaneConstraint', indices="8 9 10 11")
tentacleContact.createObject('UnilateralPlaneConstraint', indices="12 13 14 15")
tentacleContact.createObject('UnilateralPlaneConstraint', indices="16 17 18 19")
tentacleContact.createObject('UnilateralPlaneConstraint', indices="20 21 22 23")
tentacleContact.createObject('UnilateralPlaneConstraint', indices="24 25 26 27")

(continues on next page)

8 Chapter 1. Contents of the library

SoftRobots Components Documentation, Release 19.01

(continued from previous page)

tentacleContact.createObject('BarycentricMapping')

Data fields

Required Description
indices Four indices: First one for the constrained point. The others to describe the plane.

Optional Description
flipNormal The normal must be to the direction of the point.

1.1.3 Related paper

“Software toolkit for modeling, simulation and control of soft robots”,
E. Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang, M. Thieffry, et al.
Advanced Robotics (2017)

1.2 component.controller

Controller components (e.g animation edition)

1.2.1 Brief description

A Controller is a component that can process events from the keyboard or the mouse, launched at the beginning and
the end of a time step.

1.2.2 Contents

component.controller.AnimationEditor The AnimationEditor component is used to build an
animation from key points motion, or typically to build
effector goals trajectories.

component.controller.
CommunicationController

The CommunicationController component can be
used to send data from a simulation to another using
ZMQ library.

Continued on next page

1.2. component.controller 9

https://hal.inria.fr/hal-01649355/document
https://hal.inria.fr/hal-01649355/document

SoftRobots Components Documentation, Release 19.01

Table 3 – continued from previous page
component.controller.
DataVariationLimiter

The DataVariationLimiter component is used to avoid
big variation of an input data.

component.controller.
SerialPortBridgeGeneric

The “SerialPortBridgeGeneric” component is used to
send data (force, displacement, pressure. . .) through the
usb port.

component.controller.AnimationEditor

The AnimationEditor component is used to build an animation from key points motion, or typically to build effector
goals trajectories. In this directory you will find one example showing how to use the component:

• Accordion_AnimationEditor.pyscn : Soft actuated accordion

• RigidAnimation.pyscn : Rigid cube

The AnimationEditor component inherites from SOFA controller. In SOFA, a controller has an input data listening
that has to be set to true if you want the component to be active in your scene, listening=1.

Now you can build your animation. To navigate through the timeline, click left on the scene window and use the
following keyboard commands:

• ctrl+→ : move the cursor to the right

• ctrl+← : move the cursor to the left

• ctrl+pgUp: move the cursor to the next keyframe

• ctrl+pgDn : move the cursor to the previous keyframe

The cursor is represented by a white triangle. You can now move the key points that you created with MechanicalOb-
ject and save a keyframe. Between two keyframes an interpolation is computed to create the animation. A keyframe
is represented by a yellow triangle upon a line. Here are the keyframes commands:

• ctrl+a : add a key in the cursor location

• ctrl+d : delete the key

• ctrl+c : copy the key

• ctrl+x : cut the key

• ctrl+v : paste the key

You can also save, load or play/pause the animation using the following commands:

• ctrl+w : (write) save the animation in “filename”

• ctrl+m : play/pause the animation

The component is templated with Vec3 and Rigid3. This kind of animation could be used, for instance, for the control
of an effector in position and rotation. The PositionEffector component is also templated with Rigid3. Thus, you can
save a trajectory for a 6DoF target.

Example

goal = rootNode.createChild('goal')
goal.createObject('EulerImplicitSolver', firstOrder=True)
goal.createObject('CGLinearSolver', iterations='100', tolerance="1e-5", threshold="1e-
→˓5")

(continues on next page)

10 Chapter 1. Contents of the library

SoftRobots Components Documentation, Release 19.01

(continued from previous page)

goal.createObject('MechanicalObject', name='goalMO',
position='0 0 8',
showObject="1",
showObjectScale="0.5",
drawMode="1",
showColor="255 255 255 255")

The AnimationEditor takes multiple options
template : should be the same as the mechanical you want to animate
filename : file in which the animation will be saved
load : set to true to load the animation at init (default is true)
loop : when the animation is playing, set this option to true to loop and start
→˓again the animation
dx : to control the animation in displacement instead of time
frameTime (default is 0.01)
drawTimeline (default is true)
drawTrajectory (default is true)
drawSize : coeff size of diplayed elements of trajectory
goal.createObject('AnimationEditor', filename=path+"Accordion_Animation.txt",
→˓drawTrajectory=0)
goal.createObject('UncoupledConstraintCorrection')

Data fields

Required Description
maxKeyFrame Max >= 1, default 150
filename If no filename given, set default to animation.txt.

Op-
tional

Description

loop If true, will loop on the animation (only in play mode).
load If true, will load the animation at init.
dx Variation of displacement. You can control the animation on displacement instead of time. If dx is set, at

each time step, the animation will progress in term of displacement/distance. A positive dx means move
forward and a negative dx means backward (on the timeline).

fram-
e-
Time

Frame time.

draw-
Time-
line
draw-
Size
draw-
Tra-
jec-
tory

Properties Description
cursor Read only. Current frame of the cursor along the timeline.

1.2. component.controller 11

SoftRobots Components Documentation, Release 19.01

component.controller.CommunicationController

The CommunicationController component can be used to send data from a simulation to another using ZMQ library.
To use this component you need to enable SOFTROBOTS_COMMUNICATIONCONTROLLER option in cmake,
and install the ZMQ library (“SoftRobots/component/controller/README.txt”). In this directory you will find one
example showing how to use the component:

• SimulationDirect_Receiver.pyscn : Soft actuated accordion

• SimulationDirect_Sender.pyscn : Soft actuated accordion

Below is a video of the simulations running simultaneously and with a communication between them.

Example

SimulationDirect_Receiver.pyscn:

#For local communication
accordion.createObject('CommunicationController', name="sub", listening='1',

job="receiver", port="5558",
→˓nbDataField="4", pattern="0")
#Between two different computers, specify the ip adress of the sender
#accordion.createObject('CommunicationController', name="sub", listening='1',

job="receiver", port="5558",
→˓nbDataField="4", ip="...")

SimulationDirect_Sender.pyscn:

accordion.createObject('CommunicationController', listening='1', job="sender", port=
→˓"5558", nbDataField="4", pattern="0",

data1="@cavity/pressure.volumeGrowth",
data2="@cables/cable1.displacement",
data3="@cables/cable2.displacement",
data4="@cables/cable3.displacement")

Data fields

Re-
quired

Description

job If unspecified, the default value is sender.
pat-
tern

Pattern used for communication. publish/subscribe: Messages sent are distributed in a fan out fashion to
all connected peers. Never blocks. request/reply: Message sent are waiting for reply. Allows only an
alternating sequence of send/reply calls. Default is publish/subscribe. WARNING: the pattern should be the
same for both sender and receiver to be effective.

nbDataFieldNumber of field ‘data’ the user want to send or receive. Default value is 1.
data Data to send or receive.
port Default value 5556.

12 Chapter 1. Contents of the library

SoftRobots Components Documentation, Release 19.01

Optional Description
HWM If publisher, you can define the High Water Mark which is a hard limit on the maximum number

of outstanding messages shall queue in memory. Default 0 (means no limit).
ip IP adress of the sender. No given adress will set up a local communication.
atBeginAni-
mationStep

If true, will send or receive datas at begin of the animation step (if false, at end of the animation
step). Default true.

beginAt Time step value to start the communication at.
timeOut Set time out (in ms) before killing the communication. Default is 3000ms, 0 means no time out.

component.controller.DataVariationLimiter

The DataVariationLimiter component is used to avoid big variation of an input data. It interpolates between two
consecutive inputs when a jump is detected. In this directory you will find one example showing how to use the
component:

• DataVariationLimiter.pyscn : Soft actuated accordion

Below are images of the simulation.

1.2. component.controller 13

SoftRobots Components Documentation, Release 19.01

Example

goal = rootNode.createChild('goal')
goal.createObject('EulerImplicitSolver')
goal.createObject('CGLinearSolver', iterations='100', tolerance="1e-5", threshold="1e-
→˓5")
goal.createObject('MechanicalObject', name='goalMO',

position='0 0 5',
showObject="1",
showObjectScale="1",
drawMode="1")

goal.createObject('DataVariationLimiter', name="stabilizer", listening="1", input=
→˓"@goalMO.position")
goal.createObject('MechanicalObject', name='goalMOStabilized',

position='@stabilizer.output',
showObject="1",
showObjectScale="1",
drawMode="1")

goal.createObject('UncoupledConstraintCorrection')

Data fields

Required Description
input Link to the input variables
output Link to the output
size Input size.
maxJump Maximal jump allowed. Default 10% is equivalent to jump = 0.1.
nbStep Number of interpolation steps. Default is 50.

Optional Description
initOutput If true, will initialize the output with the input.

component.controller.SerialPortBridgeGeneric

The “SerialPortBridgeGeneric” component is used to send data (force, displacement, pressure. . .) through the usb
port. Usally used to send data to an Arduino card to control the real robot.

14 Chapter 1. Contents of the library

SoftRobots Components Documentation, Release 19.01

Example

rootNode.createObject('SerialPortBridgeGeneric', name="serial", port="/dev/ttyACM0",
→˓baudRate="115200", size="5", listening=True, header=255, packetOut=...)

1.2. component.controller 15

SoftRobots Components Documentation, Release 19.01

Data fields

Re-
quired

Description

port Serial port name.
bau-
dRate

Transmission speed.

pack-
etOut

Data to send: vector of unsigned char, each entry should be an integer between 0 and (header-1) <= 255.
The value of ‘header’ will be sent at the beginning of the sent data, enabling to implement a header research
in the ‘receiving’ code, for synchronization purposes.

headerVector of unsigned char. Only one value is espected, two values if splitPacket = 1.
size Size of the arrow to send. Use to check sentData size. Will return a warning if sentData size does not match

this value.
re-
ceive

If true, will read from serial port (timeOut = 10ms).

Op-
tional

Description

precise If true, will send the data in the format [header[0],[MSB,LSB]*2*size].
split-
Packet

If true, will split the packet in two for lower error rate (only in precise mode), data will have the format
[header[0],[MSB,LSB]*size],[header[1],[MSB,LSB]*size].

redun-
dancy

Each packet will be send that number of times (1=default).

Proper-
ties

Description

packetIn Read only. Data received: vector of unsigned char, each entry should be an integer between 0 and
(header-1) <= 255.

1.3 component.engine

16 Chapter 1. Contents of the library

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

SoftRobots Components Documentation, Release 19.01

18 Chapter 2. Indices and tables

Python Module Index

c
component, 1
component.constraint, 3
component.constraint.CableConstraint, 3
component.constraint.SurfacePressureConstraint,

5
component.constraint.UnilateralPlaneConstraint,

7
component.controller, 9
component.controller.AnimationEditor,

10
component.controller.CommunicationController,

12
component.controller.DataVariationLimiter,

13
component.controller.SerialPortBridgeGeneric,

14
component.engine, 16

19

SoftRobots Components Documentation, Release 19.01

20 Python Module Index

Index

C
component (module), 1
component.constraint (module), 3
component.constraint.CableConstraint

(module), 3
component.constraint.SurfacePressureConstraint

(module), 5
component.constraint.UnilateralPlaneConstraint

(module), 7
component.controller (module), 9
component.controller.AnimationEditor

(module), 10
component.controller.CommunicationController

(module), 12
component.controller.DataVariationLimiter

(module), 13
component.controller.SerialPortBridgeGeneric

(module), 14
component.engine (module), 16

21

	Contents of the library
	component.constraint
	component.controller
	component.engine

	Indices and tables
	Python Module Index
	Index

